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Induced Electronic Interactions in Chern-Simons 
Systems 

Sze-Shiang Feng, 1'4 Hong-Shi Zong, z Zhi-Xing Wang, 3 and 
Xi-Jun Qiu l 

Received April 11, 1997 

The induced electronic interactions in (1 + 2)-dimensional vector Chern-Simons 
systems are studied by means of path-integral quantization. We consider four 
cases: relativistic, and nonrelativistic fermion Maxwell-Chern-Simons models, 
and relativistic and nonrelativistic fermion Chern-Simons models. It is shown 
that the Chern-Simons term may induce exotic electronic interactions which can 
be local or nonlocal and small Chern-Simons coupling may have a considerable 
effect in some cases. 

I. INTRODUCTION 

Quantum field theories in 1 + 2 dimensions involving charged matter 
fields minimally coupled to a Chern-Simons field exhibit anyonic sectors 
with exotic spin and statistics (Hagen, 1985a; Polyakov, 1988; Semenoff, 
1988). Interest in such theories has been strongly stimulated by the fact that 
they can realize Wilczeck's charge-flux composite model, which can give a 
natural explanation of the fractional quantum Hall effect and its possible role 
in high-Tc superconductivity (Fradkin, 1991). Furthermore, they have also 
been extensively studied in terms of topologically massive gauge theory with 
the Maxwell term (Deser et al., 1982). For the Maxwell-Chern-Simons 
model, it is clear that such a system is exactly identical to a free scalar field 
(Deser et aL, 1982; Feng and Qiu, 1955). For the Proca-Chern-Simons 
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system, it has also been shown that such a system is equivalent to a system 
of two free scalar fields with different masses (Feng et al., n.d.). Though the 
cases in which matter fields are also contained are much more difficult to 
study exactly, Jackiw and Pi (1990) and Barashenkov and Harrin (1994) were 
able to solve the quantum mechanical Schr6dinger equations and obtain 
solitary solutions. The cases of fermions coupled to the Chern-Simons field 
have also been studied (Lopez and Fradkin, 1991). To the knowledge of the 
authors, the induced interactions of fermions due to the coupling to the 
Chern-Simons field has not been discussed; this the subject of this paper. 
We will study four cases. In Section 2, we study the relativistic fermion 
Chern-Simons systems with and without the Maxwell term. In Section 3, 
we study the nonrelativistic fermion Chern-Simons systems with and without 
the Maxwell term. Our approach is the path-integral quantization for con- 
strained systems. Some notations are only applicable in a local context and 
this should not lead to any confusion, while other notations, if not otherwise 
defined, are the same as usually used. 

2.  RELATIVISTIC  C H E R N - S I M O N S  M O D E L S  

2.1 .  F e r m i o n  M a x w e l l - C h e r n - S i m o n s  M o d e l  

The model Lagrangian is (Deser et al., 1982) 

1 ~ e~*'~ v (1) 

where D = "ygD~, D~ = 0~ + ieA~, ~/o = cr3, ~/1 = i~r2, ~/2 = i~l, and cri (i 
= 1, 2, 3) are the Pauli matrices. The Euler-Lagrangian equations are 

(iD - m)t~ = 0 (2) 

a~F ~ + ~ e~PF~p = eJ ~, J~ = ~-~valj 

In the Hamiltonian description, the canonical momenta are 

0~  _ i ~ / 0 ,  -rr~ - 0~s _ F~0 + I~ 
7 r -  8~J OA~ 2 e~ 

The canonical Hamiltonian is 

1 
~c  = 7r~ + 7r~A~ - ~ = eao-~l~ - i-~liDi~ + m - ~  - -~ ~ri~ri 

Ix 2 1 
"1- 2 EiJ'ITiAj -- -'8 aiAi 4- "~ FiJFij 

(3) 

(4) 

eiJFgjAo + ~riOiAo (5) 
4 
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From equation (4) we have a primary constraint 

XI = ~ 0 " ~ 0  

The total Hamiltonian is then 

~ T  = ~ r  q- OtXl 

From the consistency condition 

{XI, HT} ~ O, 

we have a secondary constraint 

(6) 

(7) 

"IT 
X2 : -4 eOFij + Oi "tri - e~'Y~ ~ 0 (9) 

It is easy to show that 

{X2, ~gT} = 0, {X~, X2} = 0 (10)  

so X1, X2 are first-class constraint. According to the standard procedure 
(Gitmann and Tyutin, 1990), we should choose two gauge-fixing conditions 

EiJaiAj (11) A = a;A; ~ 0, f2 = a;,tr; + V2A0 - 

where V 2 = -3ioi. Since det {xi, f }  = const, the quantum generating func- 
tional is 

= f ~ ~ ~'rr ~ ~)A~ B(Xi)B~) Z[fi, ~q, j~] 

X exp(i l d3x[i~l~ - ~ A .  - ~fr 

+ ~,  + ~.q + j~A.]} (12) 

"rr ~ can be integrated out readily, 

= I ~ ~tb ~ a ~  ~)'IT i ~(X2)~(f-) Z[~, lq, 

X exp{i f d3x[i~l~ + ~riA,- ~.r 

+ ~ + -~'q + j"A.]~ (13) 
J 

Hr = f d2x ~(~c (8) 
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Making a displacement ,r i ---, rd - (Ix/2)r we have 

= f ~ ~OJ ~Aw ~qTi ~(Oi "ffi -- e ~ ~  J) z[~, ,q, j , ,] 

• 8(O~Ai)~(V 2 - VL~Ja.Ai + O;rr i) 

• exp{ i l d3x [-~iD~ - m~J~ + -~'q + ~d~ 

�9 1 Ix 2 1 
+ jr + Tr iAl -  ~ eiJAiA j + ~ ffri'ffi "~- y A i A i -  -~ FiJFij 

-- i.L~ij.ffia j - "rriO-~o]} 

Since the three delta functionals ensure that 

1 (~L~iJoiAj _ Oi,.ffi ) Ao ~ 

and 

we have 

Ok OkAo ~ -- la,~k',A i -- ~-~ e-~'y~ 

1 
-'rr'0.,Ao ~- l~%ariA J - e2~',t~ ~ ( ~ o ~ )  

SO 
Z[~, "q, jr = f ~ ~t~ ~ a ~  ~ r  ~ g ( 0 i T ~  i - -  e~/~ 

X ~(OiAi)~(V 2 - ~L~iJOiAj + Oi'T[ i) 

• exp{i J d3x [-~iD~ - m~JtlJ + "~'q + "~* 

�9 

+ j~A~ + 'rriAi - ~ ~iJA.rA j + -~ qTiffti + AiAi 

1 F iJFij _ e2~/ot~ 1 } _ ~ ~ (~ /o , )  

(14) 

(15) 

(16) 

(17) 

(18) 
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Because of  equation (16), we have 

p, eqA.tAj~Oi[ai(ao+-~2e~,y~ = surface term (19) 

so it is negligible. After integrating Ao, we have 

Z[~, ~q] = Z[~, % J*'lj~=o 

= f ~b-~ ~d~ ~ r  i ~bai ~(Oi'rr i - e-~'y~ 

1 
x exp i d3x -~il~ - mdNJ + ~ + g~ + ~riAi + -~ ~ri~ri 

2 41 V'zP'e#OiAj]) + 2 Aim i - FijFij - e~l~ (20) 
...lfl 

Decompose  ~r i as 

qT i = ~ -1" oill~ oioi V = e tch~  (21) 

Then ~'lTis(oi'lT i -- eJ  O) = const.~b and 

Since 

1 E/J~ '/Ai 1 qb = 1 ,rriAi + -~ "trial ~ - +  ~ ~ - ~ vOiOiv (22) 

we have 

Z['~,~] = f ~ ~ q ~ A i ~ ( o i A i )  exp(i ld3x  [-~ii~qJ - m-~qJ - e-~'yi~Ai 

- 1 2 1 
+ ~ + ~d~ - AiAi + ~ AiAi - -~ FiJFij 

]} - e-~'y~ ~ eJo,aj + -~ .t o 
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= ( e j /  -v/-s~),~ and ~A,a(aiAi) = 

where 

e 2 
~eee = -OiO, - m~lnlJ - -~ J~ D Jr (28) 

This is the effective Lagrangian. The interaction induced by the vector field 
Ar is then ~int = 1/2 e2J~DJ~, which is nonlocal. 

2.2. The Fermion Chern-Simons Model 

The model Lagrangian is 

= -~iD~ - m-~ + ~ r A~F,, o (29) 

The canonical momenta are given by definition as 

a~ _ i-~.yo ' "r# - a~ _ ix ~o~,,,A, ' (30) 
"rr- O+ oA~ 2 

Due to ~(OiAi), we can write Ai 
const.~tp, so 

2 
--21 AiAi + -2hi" A Aii _ 41 FiJFij =21 (Op, q0C)p, ~ __ Ix2q~2) (25) 

and 

Z[fi, "q] = f ~~  ~ ,  ~p  exp{i f d3x [-6id, - m~* - e-&vi*A, + &q 

1 + ~ - eJ ~ ~ tp + ~ (O~q~a~q~ - Ix2qo2) 

l o ,  ]} 
= f ~-~ ~Oexp{ i f d3x [-~ii~d~ - m-~O +-~'q +~O 

1.1.2 e2r ~ . k l O l J k l l  ] }  
2 J~ v -~ DJ~ + 2 _x/-z-~ D ~ + -~ Jo ~--~ J~ (26) 

where D -~ = a~'0~, + IX2, i.e., 

Z[~, .q] = f ~-~ ~OJ exp{i l d3x ~eer + ~Oj + ~'q} (27) 
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and the canonical Hamiltonian is 

~c = -i-~iDit~ + m~O + e-~'y~ - p.r 

We have the primary constraints 

X1 = "tr~ "~ 0,  

with the Poisson brackets 

{XI, Ci}  = O, 

The total Hamiltonian is thus 

~ r  

Since 

(31) 

C / = ,rr i - 2 ~ U A j ~ - O  (32) 

{C(x), G(y)} = -Ixe'J8(x - y) (33) 

= ~c  + kX1 + kiC / (34) 

(Xl, l dZx~r} = -e-~l~ + p.f.iJO.,A j 

{C, f d2x ~er} = (C, I d2x ~ec} + hj(C~, I d2x CJ } 

(35) 

(36) 

f l  = V2A~ - -  e ~i j~ i j j ,  f 2  = IEij ~iTfj  (41) 
Ix 

{X2, X~} = 0, {X2, G} = 0 (40) 

So we have two first-class constraints Xi and two second-class constraints 
C -~, i = 1, 2. Correspondingly, two gauge conditions have to be chosen. They 
should be such that no contradictions will appear. A possible appropriate 
choice is 

Then 

we have a secondary constraint 

= Ix~.iJOiA j - e-~l~ ~. 0 (37) 

with 

{6, X~} = 0, It(x), C/(y)} = Ix~.ijOx ~ ( x  - y) (38) 

Equation (36) does not lead to any new constraint, whereas it fixes the 
Lagrange multipliers hi. As in Kim et al. (1995) and Ni and Chen (1995), 
in order to extract the true second class constraint, it is essential to define 

X2 = ~ + OiC (39) 
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where J~ is also given by equation (3). It can be shown that det{~, XJ} = 
const, hence we have the generating functional 

• exp(i f d3x[i-~T~ + mr"A~ 

- e~'y~ + -~i~liDi~ - m ~  + ~'q + TO] } 

= [ ~ ~ ~A,- a(oa(a~A ~) 

Let Ai = a,~p; we have 

X exp{i ; d3x[-~ifJ~-m~-2e-ijoi~o](p 

= I ~ - ~ q J e x p { i l d 3 x ( ~ + ~ q j + ~ l }  (43) 

where 

e~ ~q3 j 
~eff = -~ia~ - m'~t~ - P~ -~.yi~ __~ ('~yo@ ) (44) 

It can be seen that the interaction induced by the Chern-Simons coupling is 
proportional to the inverse of ~x, so small p~ may have considerable effects. 
From V -2 ~ In r, we know that the potential decreases as 1/r, like the 
Coulomb force, in 1 + 3 dimensions. Furthermore, ~ f r  is equivalent to the 
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direct substitution of the solution of A~ given in (Jackiw and Pi, 1990; Hagen, 
1985b) into the original Lagrangian, so it is actually covariant. 

3. NONRELATIVISTIC  C H E R N - S I M O N S  M O D E L S  

3.1. Fermion MaxwelI-Chern-Simons Model 

The model Lagrangian is supposed to be 

1 1 O 
~s = -~ [qJtiDot~ + (iD0t~)t~] + ~m ( l ~ ) t l ~  - ] F ~ F ~  

tL ~ p  A~F,,p (45) 

where D = ~liDi. Aside from a surface term, it is equivalent to 

1 0 ~ 
= ,#iDod/ - ~ t~tD2t~ - -~ F~F~o + -~ ct~PA~F.p (46) 

where D 2 = DilY + 1/4[~/i, "yJ]ieFo.. The  Euler-Lagrange equation for ~J is 

and those for Ar are 

1 
iDod/= ~m D2d/ (47) 

00~F~ + ~ ~ F ~  = ea w (48) 

[ i 1 e0.0j{t~ter3t~)] (49) t~tt~, ~mm (t~tD;t~ - (/9~t~)tt~) - ~mm 

The canonical momenta are 

0 ~  OSf ~ .. 
xr - 0t~ - i+t ,  "rr" = 0A, = 0ba~0 + ~ e'JA/ (50) 

and the canonical Hamiltonian is 

2 
1 IX ~iJTriA/_ p . -Aia .  ~c  = d/tD2t~ + et~tt~ao - -~ 'ffi'ITi "at- "~ 8 " "  

"F -~O FiJ F ij - "-~l'~ ~.iJ F ijA 0 "F 'lTi tg i A o (51) 
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We have a primary constraint • ~ O. The total Hamiltonian is 

Hr = f (~c + ~XI) d3x (52) 

Conservation of • = 0 leads to a secondary constraint 

= eCfr - 4 ~ijFij - Oi'lTi ~- 0 (53) X2 

There are no further constraints. It can be verified that the • are first class 
and therefore we should choose two gauge conditions. They can be chosen as 

fl = aimi, f2 = Oi "lTi "~ V2A0 - 2 eiJOiAj (54) 

Since det{• = const, we have the quantal generating functional 

"q] = f ~ O t  ~ 0  ~xr~ ~A~ ~(Xi)~(j~i) z[nt, 

X exp{i f d3x['rr* + ' r r~A, -  ~,c +'qtO + 0?'q]} (55) 

Making the translation ,rr i ~ ,.ffi __ . ~  ~Jmj, we have 

I ~ l[ I t  ~l l l  ~'lTi ~A~ ~(oimi)~(OiTr i -- eCtr ZInt, ~] 

x ~(a~r ~ - I~VaiAj + VEAo) 

{ I  1 p~.iJAjA, x exp i d3x[OtiD~ - ~mm d~tD2d~ + 'rriAi - 

1 i -~ AiAi FiJFij 'lTiOiAo + r i t e  + t~t'q] (56) + ~TrTr~ + -- -- 

Decomposing 7r i = (dJo/~-,fZ~),~ + Oiv, oioiv = er162 we have 

I ~ * t  ~r ~r ~A~ 5(OiA~)5(-weiJOiAj + V2Ao + eCtr Z[nt, ~] 

• exp i d3x[- * ~ _ ~  -4i - ~ - ~ vOiOiv~tiDor 

i x2 1 r r _ Ix eiJAjA i + AiAi 
2m -2 T 
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_ 0 4 FijFij + ed/f~Ao + ~lt~ + ~btxl]} 

= f ~)*t ~)d# ~A~ ~(OiAi)B(-ix~.iJcgiAj + V2Ao + eOt~b) 

• exp{i f d3x[~ti~ ~vOiaiv 

Ix 2 0 
- -  ~1~ ~ U A . ~ i  Jr- AiAi - [~JFij 

2 T 

1 1 
~mm * tD2*  - 2 aiai 

+ nt, l ,  + 
J 

(57) 

Since from equation (19), -i~eiJAiAj ~ surface term, we have 

Z[xl#, ~] = ~ t  ~ *  ~A, g(O~Ai) exp i aex[~tid~ - ~ v~iO~v - ~ d~ti~ 0 

- 1-A'A~2 + 2 AiAi -- FOFij + n t ~  + *+n] (58) 

Let Ai = (eO~i/ffZ-W)qo; we have 

Z [ ~ l t , ~ ] = f ~ d g t ~ * ~ e x p { i f d 3 x ( ~ + x l t , + O t ~ ) }  (59) 

where 

1 1 1 

ie *t~i* ~ijcgj e2 e 

The new field q~ cannot be integrated exactly. Hence, for such a system, 
the induced interactions can only be obtained approximately, unlike in the 
relativistic case. {Note that the mass dimensions in (1 + 2)-dimensional 
spacetime are: [p~] = [m], [q~] = [m] lr~, [d~] = [m], [e] = [m] 1/2, [A~] = [m] 1/2 } 

3.2. Nonrelat ivist ic  F e r m i o n  C h e r n - S i m o n s  M o d e l  

The model Lagrangian is 

1 ~L 
[s = ~tiDot~ - ~ dgtD2t~ + ~- e~PA~Fvp (61) 
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where 

0 t D 2 ~  = O t ( - V 2 ) ~  + d#td#ieOiAi + 2ieOtOiOAi - e2~bt~bAiAi (62) 

with 

Then we have 

{ ~, ~ r }  = 0, { Ci(x), ~(y) } = i~e00]B(x - y) (69) 

As in the relativistic case, {C,  ~ r }  ~" 0 gives the determinat ion o f  hi and 
leads to no new constraint. Similarly, we define 

• = ~ + 0iC i (70) 

{Xl, X2} = 0, {X2, C}  = 0 (71) 

So • are first class and C ~ are second class. Correspondingly,  we choose the 
gauge-f ixing conditions as in the relativistic case, 

f l  = V2A ~ - e eiiOijj, f2 = eli OiTrj (72) 
Ix 

ie 

The canonical  momen ta  are 

"tr - 0t~ - it~t, ~r~ - 0.4.-- - 2 e~ (63) 

Hence we have the pr imary constraints 

= a'r ~ ~-- 0, Cw = "rri - 2 Aj ~ 0 (64) • 

with Poisson brackets  

{• C}  = 0, {C(x),  Cffy)} = - I .~iJ(x  - y) (65) 

The  canonical  and total Hamil tonians  are therefore 

1 
~ c  = ~mm ~tD2t~ + e~ t~Ao  - p, eUOiAjAo (66) 

~ r  = ~ + hX~ + kiC ~ (67) 

From the consis tency condition {• f d2x~r}  ~ 0, we have a secondary 
constraint 

= - e * t ~ b  + ~eiJOiAj ~. 0 (68) 
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where J~ are given by equation (49). Since det {~, X~} 
= const, we have 

Z[~t, ~] = f ~ t  ~O ~r~ 5~a~ 8(• exp{i f dax[iOt(b 

7r~A~ -- ~m t~tD2~ -- e~bt~Ao + 

J 
Since 

= const, det{C/, Cq 

(73) 

2• i e 2  , • ~ i ,  OJ 
~eff = it~#t~ + d#tV2t~ - - -  U#TO ~-ij ~-~ (t~thb) 

e 4 0 i c9 i ie 2 
+ ~ d##~ ~-~ (~tt~) ~ (~tt~) - 8m~ ~t[~/,  ~ ]~r  (77) 

where 

Ixr j - et~t~ ~- 0 (mod ~) (74) 

we have 

= f ~ 1  t ~l~J ~),n "i ~Ai  5(05(C)~(f2) z[nt, "q] 

X exp i d3x[i~t~ + ~,4~ - ~m 0 tD2~  + ~lt0 + ~t~l] 

= I ~qJt ~ ,  ~Ai g(~)g(0iA0 

X exp i aex[iOt(~ + 2 ~iJAjAi- ~m I~l t~2~l  

+ ~t~ + $*0]} (75) 

Let A i = EijOJ~; then Fij = r q~ can be integrated 

Z[~t,~]=f~d~t~d~exp{ifd3x[~s } (76) 
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This effective Lagrangian involves a six-fermion interaction and a local four 
interaction. As in the relativistic case, ~s equals that obtained by directly 
substituting the classical solutions of A, given in Jackiw and Pi (1990) and 
Hagen (1985b) into the original Lagrangian, and this is because that without 
the Maxwell term, the vector field has no dynamics. 

4. DISCUSSION 

The discussion of induced electronic interactions is similar to that from 
the electron-phonon Hamiltonian to Fr0hlich's Hamiltonian in which the 
phonon degrees are integrated out (Jones and March, 1973). Since the origin 
of Chern-Simons coupling is becoming clearer, e.g., it may be generated by 
a heavy fermion determinant (Redlich, 1984a, b; Yang and Ni, 1995), we 
may suppose that there exist two species of fermions, t~,~ and OM with masses 
m and M, and in the limit M ~ 0% the self-interaction of ~m induced by OM 
is equivalent to that induced by a Chern-Simons field. The concept of a 
heavy fermion is not purely imaginary, it does exist as a kind of quasiparticle 
(Andres et  al., 1975; Feng and Jin, 1992). 

Since the interactions are now known, we may study the properties of 
the electronic system. For the ground state, we may use, for example, the 
density functional method and the Gaussian effective potential method. On 
the other hand, in the discretized case for a lattice, we may study it in 
the Bloch representation (BCS-like) as well as the Wannier representation 
(Hubbard-like), for which the "q-pairing method is especially powerful 
(Yang, 1989). 
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